Parameterization of stochastic multiscale triads
نویسندگان
چکیده
We discuss applications of a recently developed method for model reduction based on linear response theory of weakly coupled dynamical systems. We apply the weak coupling method to simple stochastic differential equations with slow and fast degrees of freedom. The weak coupling model reduction method results in general in a nonMarkovian system; we therefore discuss the Markovianization of the system to allow for straightforward numerical integration. We compare the applied method to the equations obtained through homogenization in the limit of large timescale separation between slow and fast degrees of freedom. We numerically compare the ensemble spread from a fixed initial condition, correlation functions and exit times from a domain. The weak coupling method gives more accurate results in all test cases, albeit with a higher numerical cost.
منابع مشابه
Stochastic superparameterization in a quasigeostrophic model of the Antarctic Circumpolar Current
Stochastic superparameterization, a stochastic parameterization framework based on a multiscale formalism, is developed for mesoscale eddy parameterization in coarse-resolution ocean modeling. The framework of stochastic superparameterization is reviewed and several configurations are implemented and tested in a quasigeostrophic channel model – an idealized representation of the Antarctic Circu...
متن کاملA Simple Stochastic Parameterization for Reduced Models of Multiscale Dynamics
Multiscale dynamics are frequently present in real-world processes, such as the atmosphere-ocean and climate science. Because of time scale separation between a small set of slowly evolving variables and much larger set of rapidly changing variables, direct numerical simulations of such systems are difficult to carry out due to many dynamical variables and the need for an extremely small time d...
متن کاملParametrization of stochastic multiscale triads
We discuss applications of a recently developed method for model reduction based on linear response theory of weakly coupled dynamical systems. We apply the weak coupling method to simple stochastic differential equations with slow and fast degrees of freedom. The weak coupling model reduction method results in general in a non-Markovian system, we therefore discuss the Markovianization of the ...
متن کاملStochastic Superparameterization and Multiscale Filtering of Turbulent Tracers
Data assimilation or filtering combines a numerical forecast model and observations to provide accurate statistical estimation of the state of interest. In this paper we are concerned with accurate data assimilation of a sparsely observed passive tracer advected in turbulent flows using a reduced-order forecast model. The turbulent flows which contain anisotropic and inhomogeneous structures su...
متن کاملStochastic averaging for SDEs with Hopf Drift and polynomial diffusion coefficients
It is known that a stochastic differential equation (SDE) induces two probabilistic objects, namely a difusion process and a stochastic flow. While the diffusion process is determined by the innitesimal mean and variance given by the coefficients of the SDE, this is not the case for the stochastic flow induced by the SDE. In order to characterize the stochastic flow uniquely the innitesimal cov...
متن کامل